传统的假视频检测方法输出篡改图像的可能性值或可疑掩码。但是,这种无法解释的结果不能用作令人信服的证据。因此,更好地追溯虚假视频来源。传统的散列方法用于检索语义 - 相似的图像,这不能区分图像的细微差别。具体地,与传统视频检索相比,源跟踪。从类似的源视频中找到真实的挑战是一项挑战。我们设计了一种新的损失哈希多粒损失,解决了人们的视频非常相似的问题:与不同角度相同的场景,与同一个人的类似场景。我们提出了基于视觉变压器的模型,名为视频跟踪和篡改本地化(VTL)。在第一阶段,我们通过Vithash(VTL-T)训练哈希中心。然后,将假视频输入到Vithash,该vithash输出散列码。哈希码用于从哈希中心检索源视频。在第二阶段,源视频和假视频被输入到生成器(VTL-L)。然后,掩盖可疑区域以提供辅助信息。此外,我们构建了两个数据集:DFTL和Davis2016-TL。对DFTL的实验明显展示了我们在类似视频的追踪中框架的优势。特别地,VTL还通过在Davis2016-TL上实现了与最先进的方法的相当性能。我们的源代码和数据集已在github上发布:\ url {https:/github.com/lajlksdf/vtl}。
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
It is crucial to evaluate the quality and determine the optimal number of clusters in cluster analysis. In this paper, the multi-granularity characterization of the data set is carried out to obtain the hyper-balls. The cluster internal evaluation index based on hyper-balls(HCVI) is defined. Moreover, a general method for determining the optimal number of clusters based on HCVI is proposed. The proposed methods can evaluate the clustering results produced by the several classic methods and determine the optimal cluster number for data sets containing noises and clusters with arbitrary shapes. The experimental results on synthetic and real data sets indicate that the new index outperforms existing ones.
translated by 谷歌翻译
Feature transformation for AI is an essential task to boost the effectiveness and interpretability of machine learning (ML). Feature transformation aims to transform original data to identify an optimal feature space that enhances the performances of a downstream ML model. Existing studies either combines preprocessing, feature selection, and generation skills to empirically transform data, or automate feature transformation by machine intelligence, such as reinforcement learning. However, existing studies suffer from: 1) high-dimensional non-discriminative feature space; 2) inability to represent complex situational states; 3) inefficiency in integrating local and global feature information. To fill the research gap, we formulate the feature transformation task as an iterative, nested process of feature generation and selection, where feature generation is to generate and add new features based on original features, and feature selection is to remove redundant features to control the size of feature space. Finally, we present extensive experiments and case studies to illustrate 24.7\% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.
translated by 谷歌翻译
Urban traffic speed prediction aims to estimate the future traffic speed for improving the urban transportation services. Enormous efforts have been made on exploiting spatial correlations and temporal dependencies of traffic speed evolving patterns by leveraging explicit spatial relations (geographical proximity) through pre-defined geographical structures ({\it e.g.}, region grids or road networks). While achieving promising results, current traffic speed prediction methods still suffer from ignoring implicit spatial correlations (interactions), which cannot be captured by grid/graph convolutions. To tackle the challenge, we propose a generic model for enabling the current traffic speed prediction methods to preserve implicit spatial correlations. Specifically, we first develop a Dual-Transformer architecture, including a Spatial Transformer and a Temporal Transformer. The Spatial Transformer automatically learns the implicit spatial correlations across the road segments beyond the boundary of geographical structures, while the Temporal Transformer aims to capture the dynamic changing patterns of the implicit spatial correlations. Then, to further integrate both explicit and implicit spatial correlations, we propose a distillation-style learning framework, in which the existing traffic speed prediction methods are considered as the teacher model, and the proposed Dual-Transformer architectures are considered as the student model. The extensive experiments over three real-world datasets indicate significant improvements of our proposed framework over the existing methods.
translated by 谷歌翻译
We present SODA: the first publicly available, million-scale high-quality social dialogue dataset. Using SODA, we train COSMO: a generalizable conversation agent outperforming previous best-performing agents on both in- and out-of-domain datasets. In contrast to most existing crowdsourced, small-scale dialogue corpora, we distill 1.5M socially-grounded dialogues from a pre-trained language model (InstructGPT; Ouyang et al., 2022). Dialogues are distilled by contextualizing social commonsense knowledge from a knowledge graph (Atomic10x; West et al., 2022). Human evaluation shows that dialogues in SODA are more consistent, specific, and (surprisingly) natural than prior human-authored datasets - e.g., DailyDialog (Li et al., 2017), BlendedSkillTalk (Smith et al., 2020). In addition, extensive evaluations show that COSMO is significantly more natural and consistent on unseen datasets than best-performing dialogue models - e.g., GODEL (Peng et al., 2022), BlenderBot (Roller et al., 2021), DialoGPT (Zhang et al., 2020). Furthermore, it is sometimes even preferred to the original human-written gold responses. We make our data, models, and code public.
translated by 谷歌翻译
We propose a novel task, G4C (Goal-driven Guidance Generation in Grounded Communication), for studying goal-driven and grounded natural language interactions. Specifically, we choose Dungeons and Dragons (D&D) -- a role-playing game consisting of multiple player characters and a Dungeon Master (DM) who collaborate to achieve a set of goals that are beneficial to the players -- as a testbed for this task. Here, each of the player characters is a student, with their own personas and abilities, and the DM is the teacher, an arbitrator of the rules of the world and responsible for assisting and guiding the students towards a global goal. We propose a theory-of-mind-inspired methodology for training such a DM with reinforcement learning (RL), where a DM: (1) learns to predict how the players will react to its utterances using a dataset of D&D dialogue transcripts; and (2) uses this prediction as a reward function providing feedback on how effective these utterances are at guiding the players towards a goal. Human and automated evaluations show that a DM trained with RL to generate guidance by incorporating a theory-of-mind of the players significantly improves the players' ability to achieve goals grounded in their shared world.
translated by 谷歌翻译
Aiming at the current problems of theory-oriented,practice-light,and lack of innovation ability in the teaching of postgraduate software engineering courses,a multi-stage feedback teaching mode for software engineering postgraduates based on competition project_driven is proposed. The model is driven by the competition project,and implementing suggestions are given in terms of stage allocation of software engineering course tasks and ability cultivation,competition case design and process evaluation improvement,etc. Through the implementation of this teaching mode,students enthusiasm and initiative are expected to be stimulated,and the overall development of students professional skills and comprehension ability would be improved to meet the demand of society for software engineering technical talents.
translated by 谷歌翻译